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RDMA

Remote Direct Memory Access: 
A network feature that allows 
direct access to the memory of 
a remote computer.
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HERD
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1. Improved understanding of RDMA through  
micro-benchmarking  

2. High-performance key-value system: 

• Throughput: 26 Mops (2X higher than others) 

• Latency: 5 µs (2X lower than others)
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RDMA intro
Features: 

• Ultra-low latency: 1 µs RTT 

• Zero copy + CPU bypass
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User buffer DMA buffer NIC

Providers: 
!
InfiniBand, RoCE,…

User bufferDMA bufferNIC



RDMA in the datacenter
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48 port 10 GbE switches

Switch RDMA Cost

Mellanox SX1012 YES $5,900

Cisco 5548UP NO $8,180

Juniper EX5440 NO $7,480



In-memory KV stores
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Webserver

Webserver

Webserver

Webserver

Webserver

memcached

memcached

Database

Interface: GET, PUT 
!

Requirements: 
• Low latency 
• High request rate



RDMA basics
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RDMA read: 
 
READ(local_buf, size, remote_addr)

RDMA write: 
 
WRITE(local_buf, size, remote_addr)

RNIC

Verbs



Life of a WRITE
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Requester Responder

1: Request descriptor, PIO

2: Payload, DMA read

3: RDMA write request

4: Payload, DMA write

5: RDMA ACK

6: Completion, DMA write
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CPU,RAM RNIC RNIC CPU,RAM



Recent systems
Pilaf [ATC 2013] 

FaRM-KV [NSDI 2014]: an example usage of FaRM 

!

Approach: RDMA reads to access remote data structures 

Reason: the allure of CPU bypass
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The price of CPU bypass
Key-Value stores have an inherent level of indirection. 

An index maps a keys to address. Values are stored 
separately. 

Server’s DRAM
ValuesIndex

At least 2 RDMA reads required: 
≧ 1 to fetch address 
1 to fetch value
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Not true if value is in index



The price of CPU bypass
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The price of CPU bypass

READ #1 (fetch pointer)

Client

Server
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The price of CPU bypass

Client

Server
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READ #2 (fetch value)



Our approach

Goal Main ideas

#1: Use a single round trip Request-reply with server CPU involvement + 
WRITEs faster than READs

#2. Increase throughput Low level verbs optimizations

#3. Improve scalability Use datagram transport
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Client

Server

#1: Use a single round trip

WRITE #1 (request)

WRITE #2 (reply)

DRAM accesses
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#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ 2+ RDMA reads

HERD GET 1 2 RDMA writes

Lower latency High throughput
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Setup: Apt Cluster 
!
192 nodes, 56 Gbps IB
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RDMA WRITEs faster than READs



RNIC CPU,RAM

ServerRDMA WRITE
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RNIC CPU,RAM

ServerRDMA READ

RDMA write request

RDMA ACK

RDMA read request

RDMA read response

PCIe DMA write PCIe DMA read

Reason: PCIe writes faster than PCIe reads

RDMA WRITEs faster than READs



Request-reply throughput:

High-speed request-reply
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Setup: one-to-one client-server 
communication

32 byte payloads
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2 WRITEs 

1 READ 
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2 READs 



#2: Increase throughput

CPU,RAM RNIC RNIC CPU,RAM

Client Server

WRITE #1: Request

WRITE #2: Response

Processing
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Simple request-reply:



Optimize WRITEs

CPU,RAM RNIC RNIC CPU,RAM
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Requester Responder

+inlining: encapsulate payload in 
request descriptor (2→1)

+unreliable: use unreliable transport (- 5)

+unsignaled: don’t ask for request  
completions (- 6)
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#2: Increase throughput

CPU,RAM RNIC RNIC CPU,RAM

Client Server

WRITE #1: Request

WRITE #2: Response

Processing
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Optimized request-reply:



#2: Increase throughput
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#3: Improve scalability
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#3: Improve scalability

SRAM

State 1

State 2

State 3

State N

C1

C2

C3

CN ||state|| > SRAM

Clients



SRAM

#3: Improve scalability

C1

C2

C3

Inbound scalability ≫ outbound because 
inbound state (    )     outbound (              )  ≪

Use datagram for outbound replies

Datagram only supports SEND/RECV. 
SEND/RECV is slow.

SEND/RECV is slow only at the receiver



Scalable request-reply
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Evaluation
HERD = Request-Reply + MICA [NSDI 2014] 

!

Compare against emulated versions of Pilaf and 
FaRM-KV 

• No datastore 

• Focus on maximum performance achievable
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48 byte items, GET intensive workload

26 Mops, 5 µs

Low load, 3.4 µs



Latency vs throughput
48 byte items, GET intensive workload
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2X higher

16 byte keys, 95% GET workload



HERD
• Re-designing RDMA-based KV stores to use a 

single round trip 

• WRITEs outperform READs 

• Reduce PCIe and InfiniBand transactions 

• Embrace SEND/RECV 

• Code is online: https://github.com/efficient/HERD
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https://github.com/efficient/HERD


Throughput comparison
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Faster than RDMA reads
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16 byte keys, 95% GET workload



Throughput comparison
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