
Using RDMA Efficiently
for Key-Value Services

Anuj Kalia (CMU)
Michael Kaminsky (Intel Labs), David Andersen (CMU)

1

RDMA

Remote Direct Memory Access:
A network feature that allows
direct access to the memory of
a remote computer.

2

HERD

3

1. Improved understanding of RDMA through  
micro-benchmarking  

2. High-performance key-value system:

• Throughput: 26 Mops (2X higher than others)

• Latency: 5 µs (2X lower than others)

BA

RDMA intro
Features:

• Ultra-low latency: 1 µs RTT

• Zero copy + CPU bypass

4

User buffer DMA buffer NIC

Providers:
!
InfiniBand, RoCE,…

User bufferDMA bufferNIC

RDMA in the datacenter

5

48 port 10 GbE switches

Switch RDMA Cost

Mellanox SX1012 YES $5,900

Cisco 5548UP NO $8,180

Juniper EX5440 NO $7,480

In-memory KV stores

6

Webserver

Webserver

Webserver

Webserver

Webserver

memcached

memcached

Database

Interface: GET, PUT
!

Requirements:
• Low latency
• High request rate

RDMA basics

7

RDMA read: 
 
READ(local_buf, size, remote_addr)

RDMA write: 
 
WRITE(local_buf, size, remote_addr)

RNIC

Verbs

Life of a WRITE

1

2
3

4

5

6

Requester Responder

1: Request descriptor, PIO

2: Payload, DMA read

3: RDMA write request

4: Payload, DMA write

5: RDMA ACK

6: Completion, DMA write

8

CPU,RAM RNIC RNIC CPU,RAM

Recent systems
Pilaf [ATC 2013]

FaRM-KV [NSDI 2014]: an example usage of FaRM

!

Approach: RDMA reads to access remote data structures

Reason: the allure of CPU bypass

9

The price of CPU bypass
Key-Value stores have an inherent level of indirection.

An index maps a keys to address. Values are stored
separately.

Server’s DRAM
ValuesIndex

At least 2 RDMA reads required:
≧ 1 to fetch address
1 to fetch value

10

Not true if value is in index

The price of CPU bypass

11

The price of CPU bypass

READ #1 (fetch pointer)

Client

Server

12

The price of CPU bypass

Client

Server

13

READ #2 (fetch value)

Our approach

Goal Main ideas

#1: Use a single round trip Request-reply with server CPU involvement +
WRITEs faster than READs

#2. Increase throughput Low level verbs optimizations

#3. Improve scalability Use datagram transport

14

Client

Server

#1: Use a single round trip

WRITE #1 (request)

WRITE #2 (reply)

DRAM accesses

15

#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ 2+ RDMA reads

HERD GET 1 2 RDMA writes

Lower latency High throughput

S

C

C

C

C

C

Setup: Apt Cluster
!
192 nodes, 56 Gbps IB

17

Th
ro

ug
hp

ut
 (M

op
s)

0

10

20

30

40

Payload size (Bytes)
4 32 64 92 128 160 192 224 256

READ WRITE

RDMA WRITEs faster than READs

RNIC CPU,RAM

ServerRDMA WRITE

18

RNIC CPU,RAM

ServerRDMA READ

RDMA write request

RDMA ACK

RDMA read request

RDMA read response

PCIe DMA write PCIe DMA read

Reason: PCIe writes faster than PCIe reads

RDMA WRITEs faster than READs

Request-reply throughput:

High-speed request-reply

 S

C1

C8

Setup: one-to-one client-server
communication

32 byte payloads

Th
ro

ug
hp

ut
 (M

op
s)

0

10

20

30

Request-Reply READ

1

8

2 WRITEs

1 READ

19

2 READs

#2: Increase throughput

CPU,RAM RNIC RNIC CPU,RAM

Client Server

WRITE #1: Request

WRITE #2: Response

Processing

20

Simple request-reply:

Optimize WRITEs

CPU,RAM RNIC RNIC CPU,RAM

1

2
3

4

5

6

Requester Responder

+inlining: encapsulate payload in
request descriptor (2→1)

+unreliable: use unreliable transport (- 5)

+unsignaled: don’t ask for request
completions (- 6)

21

#2: Increase throughput

CPU,RAM RNIC RNIC CPU,RAM

Client Server

WRITE #1: Request

WRITE #2: Response

Processing

22

Optimized request-reply:

#2: Increase throughput

Th
ro

ug
hp

ut
 (M

op
s)

0

5

10

15

20

25

30

Request-Reply READ

basic +unreliable
+unsignaled +inlined

 S

C1

C8

Setup: one-to-one client-server
communication

1

8

23

#3: Improve scalability

 S

C1

CN

Setup

1

N

Th
ro

ug
hp

ut
 (M

op
s)

0

5

10

15

20

25

30

Number of client/server processes
1 2 4 6 8 10 12 14 16

Request-Reply

24

#3: Improve scalability

SRAM

State 1

State 2

State 3

State N

C1

C2

C3

CN ||state|| > SRAM

Clients

SRAM

#3: Improve scalability

C1

C2

C3

Inbound scalability ≫ outbound because
inbound state () outbound () ≪

Use datagram for outbound replies

Datagram only supports SEND/RECV.
SEND/RECV is slow.

SEND/RECV is slow only at the receiver

Scalable request-reply

27

Th
ro

ug
hp

ut
 (M

op
s)

0

10

20

30

40

Number of client/server processes
1 2 4 6 8 10 12 14 16

Request-Reply (Naive)
Request Reply (Hybrid)

 S

C1

CN

Setup

1

N

RDMA write, connected
SEND, datagram

Evaluation
HERD = Request-Reply + MICA [NSDI 2014]

!

Compare against emulated versions of Pilaf and
FaRM-KV

• No datastore

• Focus on maximum performance achievable

28

La
te

nc
y

(m
ic

ro
se

co
nd

s)

0

4

8

12

Throughput (Mops)
0 5 10 15 20 25 30

HERD

Latency vs throughput

95th percentile

5th percentile

29

48 byte items, GET intensive workload

26 Mops, 5 µs

Low load, 3.4 µs

Latency vs throughput
48 byte items, GET intensive workload

La
te

nc
y

(m
ic

ro
se

co
nd

s)

0

3

6

9

12

Throughput (Mops)
0 5 10 15 20 25 30

Emulated Pilaf Emulated FaRM-KV HERD
95th percentile

5th percentile

26 Mops, 5 µs

12 Mops, 8 µs

Low load, 3.4 µs

30

Th
ro

ug
hp

ut
 (M

op
s)

0

10

20

30

Value size (Bytes)
4 8 16 32 64 128 256 512 1024

Emulated Pilaf Emulated FaRM-KV
HERD

Throughput comparison

31

2X higher

16 byte keys, 95% GET workload

HERD
• Re-designing RDMA-based KV stores to use a

single round trip

• WRITEs outperform READs

• Reduce PCIe and InfiniBand transactions

• Embrace SEND/RECV

• Code is online: https://github.com/efficient/HERD

32

https://github.com/efficient/HERD

Throughput comparison
Th

ro
ug

hp
ut

 (M
op

s)

0

10

20

30

Value size
4 8 16 32 64 128 256 512 1024

Emulated Pilaf Emulated FaRM-KV
HERD READ

Faster than RDMA reads

33

16 byte keys, 95% GET workload

Throughput comparison
Th

ro
ug

hp
ut

 (M
op

s)

0

5

10

15

20

25

30

Emulated Pilaf Emulated FaRM-KV HERD

5% PUT 50% PUT 100% PUT

48 byte items

34

