Using RDMA Efficiently
for Key-Value Services

Anuj Kalia (CMU)
Michael Kaminsky (Intel Labs), David Andersen (CMU)

RDMA

Remote Direct Memory Access:
A network feature that allows
direct access to the memory of
a remote computer.

HERD

1. Improved understanding of RDMA through
micro-benchmarking

2. High-pertormance key-value system:
* Throughput: 26 Mops (2X higher than others)

o |atency: 5 us (2X lower than others)

RDMA Intro

Features: Providers:

» Ultra-low latency: 1 us RTT InfiniBand, RoCE,...

o Zero copy + CPU bypass

‘User buffer

NIC >4-| DMA buffer |—{User buffer |

: O .

RDMA In the gatacenter

48 port 10 GbE switches

Mellanox SX1012

Cisco 5548UP

Juniper EX5440

QLOGIC .+

<

Microsoft Azure

XX

_Mellanox . GO gle

— o Qg
PR
‘. T

Quanta Computer

INn-memory KV stores

‘ Webserver

‘Webserver -

‘ Webserver

Wiiu Wi

‘ memcached |

—>

‘Webserver ..

Database

Interface: GET, PUT

Requirements:

oW |ate

Ncy

—High rec

uest rate

RDMA basics

Verbs

RDMA read:

READ (local buf, size, remote addr)

RDMA write:

WRITE (local buf, size, remote addr)

| Ife of a WRITE

Requester

CPU,RAM RNIC

1: Request descriptor, PIO

2. Payload, DMA read

3: RDMA write request

6: Completion, DMA write

Responder

L]
-~
)
)

-
-
-

RNIC CPU,RAM

4. Payload, DMA write

5: RDMA ACK

Recent systems

Pilaf [ATC 2013]

FaRM-KV [NSDI 2014]: an example usage of FaRM

Approach: RDMA reads to access remote data structures

Reason: the allure of CPU bypass

The price of CPU bypass

Key-Value stores have an inherent level of indirection.

An iIndex maps a keys to address. Values are stored

separately.

Server's DRAM
Index Values

B> |

At least 2 RDMA reads required:
= 1 to fetch address

1 to fetch value

Not true if value is in index

10

The prlce of CPU bypass

\

11

The price of CPU bypass

aa / ¥ Server
READ #1 (fetch pointer)

A
-ty

Client

12

The price of CPU bypass

. _.':\:3':‘ ' A A
el LW e
N
i A
N P U
A S
> Server
.‘l .-
A AR
AN elCn value
": » (SR

o S .
At _\‘\)::

Client

13

Our approach

Main ideas

#1: Use a single round trip

Request-reply with server CPU involvement +
WRITEs faster than READs

#2. Increase throughput

Low level verbs optimizations

#3. Improve scalability

Use datagram transport

14

#1: Use a single round trip

WRITE #1 (request

WRITE #2 (reply)

15

Client

#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ BRDMA reads

HERD GET 1 2 RDMA writes

\/Lower latency @High throughput
O

RDMA WRITEs faster than READs

Setup: Apt Cluster

192 nodes, 56 Gbps IB

O READ 4 \WRITE

N
O

—
@)

Throughput (Mops)
S 38

O
~

32 64 92 128 160 192 224 256
Payload size (Bytes)

17

RDMA WRITEs faster than READs

Reason: PCle writes faster than PCle reads

RDMA WRITE Server RDMA READ .
RDMA write request RDMA read request
B S N |
PCle DMA write s PCle DMA read >’
e Pt
RDMA ACK RDMA read response
RI\TIC CPU,_RAI\/I RNIC CPU,RAM

18

High-speed request-reply

Request-reply throughput:

—L]

Setup: one-to-one client-server
communication

30

20

10

Throughput (Mops)

19

32 byte payloads

2 WRITEs

2 READs

Request-Reply

1 READ

READ

#2: Increase througnhput

Simple request-reply:

Client Server
<>.'r WRITE #1: Request
\}. .
_________ o
Y
| P
— Processing
—
../" ------- WRITE #2: Response
____________ J
CPU,RAM RNIC RNIC CPU,RAM

20

Optimize WRITESs

Requester Responder

1

—\
+inlining: encapsulate payload in

request descriptor (2—1) <§:

+unreliable: use unreliable transport (- 5) {‘

+unsignaled: don't ask for request

completions (- 6) X,

CPU;I?AI\/I Rl_IIC RNIC CPU,RAM

#2: Increase througnhput

Optimized request-reply:

Client

.\.

- -
-~
-~
-...
-
-
-

CPU,RAM RNIC

22

-m e
-m -

-m -
-m -

Server

RNIC CPU,RAM

WRITE #1: Request
Processing

WRITE #2: Response

#2: Increase througnhput

basic B +unreliable
B +unsignaled M +inlined
30
25
_
: +*— D
1 S 20
5 5 =
5 .S =
: : a 15
. £
_ —r] :
© 10
=
|_
Setup: one-to-one client-server 0
communication 0

Request-Reply READ

23

#3: Improve scalability

¥ Request-Reply
30

25

20

15

10

0p)
Throughput (Mops)

1 2 4 6 3 10 12 14 16

Number of client/server processes

24

#3: Improve scalabllity

: Clients
| 4 A
SRAM l
State 1 p
State2 P
State3 P

State N |state|| > SRAM

1 #3: Improve scalability

Inbound scalability » outbound because

inbound state (I) < outbound (-)

Use datagram for outbound replies

l

Datagram only supports SEND/RECV. @

SEND/RECYV is slow.

l

SEND/RECV is slow only at the receiver

Scalable request-reply

—— RDMA write, connected ¥ Request-Reply (Naive)
_____ > SEND, datagram 10 ¥ Request Reply (Hybrid)
)
Q
O
=
5
S &
O)
D)
o
i
|_
Setu 0
9 1 2 4 6 8 10 12 14 16

Number of client/server processes

27

Evaluation

HERD = Request-Reply + MICA [NSDI 2014]

Compare against emulated versions of Pilaf and
FaRM-KV

e NoO datastore

* Focus on maximum performance achievable

28

|_atency vs throughput

48 byte items, GET intensive workload

— HERD
r - 95t percentile
o))

O
S
o 5 .
% 8 T L 5t percentile
O
S 26 Mops, 5 us
N T SN
- ! 1 I
% Low load, 3.4 us
—

0

0 5 10 15 20 25 30

Throughput (Mops)

29

|_atency vs throughput

48 byte items, GET intensive workload

— Emulated Pilaf = Emulated FaRM-KV =— HERD
- 95 percentile

L 5th percentile

Low load, 3.4 us

0 5 10 15 20 25 30

Latency (microseconds)
[@))

Throughput (Mops)

30

Throughput comparison

16 byte keys, 95% GET workload

0 Emulated Pilaf ¥ Emulated FaRM-KV

A HERD
30
L——D—/
/U? A
)
= 20 2X higher |
S
s v
o VX
> 10 —O— O ——§
O
-
I_
0
4 8 16 32 64 128 256 512 1024

Value size (Bytes)

31

HERD

* Re-designing RDMA-based KV stores to use a
single round trip

 WRITEs outperform READs
* Reduce PCle and InfiniBand transactions
e Embrace SEND/RECV

* Code is online: https://github.com/efficient/HERD

32

https://github.com/efficient/HERD

Throughput comparison

16 byte keys, 95% GET workload

0 Emulated Pilaf ¥ Emulated FaRM-KV
A HERD READ

Throughput (Mops)

4 3 16 32 64 128 256 512 1024

Value size

33

Throughput comparison

48 byte items
W 5% PUT 50% PUT B 100% PUT

30
25
20

15

Throughput (Mops)

Emulated Pilaf Emulated FaRM-KV HERD

34

