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RDMA

Remote Direct Memory Access:
A network feature that allows
direct access to the memory of
a remote computer.




HERD

1. Improved understanding of RDMA through
micro-benchmarking

2. High-pertormance key-value system:
* Throughput: 26 Mops (2X higher than others)

o |atency: 5 us (2X lower than others)



RDMA Intro

Features: Providers:

» Ultra-low latency: 1 us RTT InfiniBand, RoCE,...

o Zero copy + CPU bypass

‘User buffer

NIC >4-| DMA buffer |—{User buffer |
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RDMA In the gatacenter
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INn-memory KV stores
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Interface: GET, PUT
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RDMA basics

Verbs

RDMA read:

READ (local buf, size, remote addr)

RDMA write:

WRITE (local buf, size, remote addr)




| Ife of a WRITE

Requester

CPU,RAM RNIC

1: Request descriptor, PIO

2. Payload, DMA read

3: RDMA write request

6: Completion, DMA write

Responder
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4. Payload, DMA write

5: RDMA ACK




Recent systems

Pilaf [ATC 2013]

FaRM-KV [NSDI 2014]: an example usage of FaRM

Approach: RDMA reads to access remote data structures

Reason: the allure of CPU bypass



The price of CPU bypass

Key-Value stores have an inherent level of indirection.

An iIndex maps a keys to address. Values are stored

separately.

Server's DRAM
Index Values

B> |

At least 2 RDMA reads required:
= 1 to fetch address

1 to fetch value

Not true if value is in index
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The prlce of CPU bypass
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The price of CPU bypass

aa / ¥ Server
READ #1 (fetch pointer)

A
-ty

Client

12



The price of CPU bypass
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Our approach

Main ideas

#1: Use a single round trip

Request-reply with server CPU involvement +
WRITEs faster than READs

#2. Increase throughput

Low level verbs optimizations

#3. Improve scalability

Use datagram transport
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#1: Use a single round trip

WRITE #1 (request

WRITE #2 (reply)
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#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ BRDMA reads

HERD GET 1 2 RDMA writes

\/Lower latency @High throughput
O



RDMA WRITEs faster than READs

Setup: Apt Cluster

192 nodes, 56 Gbps IB
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RDMA WRITEs faster than READs

Reason: PCle writes faster than PCle reads

RDMA WRITE Server RDMA READ .
RDMA write request RDMA read request
B S N |
PCle DMA write s PCle DMA read >’
e Pt
RDMA ACK RDMA read response
RI\TIC CPU,_RAI\/I RNIC CPU,RAM
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High-speed request-reply

Request-reply throughput:

—L]

Setup: one-to-one client-server
communication
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Throughput (Mops)
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32 byte payloads

2 WRITEs

2 READs

Request-Reply

1 READ

READ



#2: Increase througnhput

Simple request-reply:

Client Server
<>.'r WRITE #1: Request
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Optimize WRITESs

Requester Responder

1

—\
+inlining: encapsulate payload in

request descriptor (2—1) <§:

+unreliable: use unreliable transport (- 5) {‘

+unsignaled: don't ask for request

completions (- 6) X,

CPU;I?AI\/I Rl\_IIC RNIC CPU,RAM



#2: Increase througnhput

Optimized request-reply:
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#2: Increase througnhput
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#3: Improve scalability

¥ Request-Reply
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#3: Improve scalabllity

: Clients
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1 #3: Improve scalability

Inbound scalability » outbound because

inbound state (I) < outbound (- )

Use datagram for outbound replies

l

Datagram only supports SEND/RECV. @

SEND/RECYV is slow.

l

SEND/RECV is slow only at the receiver




Scalable request-reply

——  RDMA write, connected ¥ Request-Reply (Naive)
_____ > SEND, datagram 10 ¥ Request Reply (Hybrid)
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Evaluation

HERD = Request-Reply + MICA [NSDI 2014]

Compare against emulated versions of Pilaf and
FaRM-KV

e NoO datastore

* Focus on maximum performance achievable
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|_atency vs throughput

48 byte items, GET intensive workload
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|_atency vs throughput

48 byte items, GET intensive workload
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Throughput comparison

16 byte keys, 95% GET workload
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HERD

* Re-designing RDMA-based KV stores to use a
single round trip

 WRITEs outperform READs
* Reduce PCle and InfiniBand transactions
e Embrace SEND/RECV

* Code is online: https://github.com/efficient/HERD
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https://github.com/efficient/HERD

Throughput comparison

16 byte keys, 95% GET workload

0 Emulated Pilaf ¥ Emulated FaRM-KV
A HERD READ
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Throughput comparison

48 byte items
W 5% PUT 50% PUT B 100% PUT
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