
Datacenter RPCs can be
General and Fast

Anuj Kalia (CMU)
Michael Kaminsky (Intel Labs)

David G. Andersen (CMU)

 1

 2

Modern datacenter networks are fast

• 100 Gbps
• 2 µs RTT under one switch
• 300 ns per switch hop

 3

Existing networking options sacrifice performance or generality

Fast
SpecializedGeneral

Slow

• Works in commodity
datacenters 

• Provides reliability,
congestion control, …

Ex: TCP, gRPC

• Makes simplifying
assumptions 

• Requires special
hardware

Ex: DPDK, RDMA

Drawbacks

• Limited applicability

• Reduced modularity and reuse due to co-design

Specialization for fast networking

 4

FaRM [NSDI 14, SOSP 15]  
HERD [SIGCOMM 14] 
DrTM [SOSP15, OSDI 18]  
LITE [SOSP 17] 
Wukong [OSDI 16] 
FaSST [OSDI 16]  
NAM-DB [VLDB 17] 
HyperLoop [SIGCOMM 18]  
DSLR [SIGMOD 18]

…

RDMA NICs
KV-Direct [SOSP 15] 
ZabFPGA [NSDI 18]

FPGAs
NetChain [NSDI 18]

Programmable switches

 5

eRPC provides both speed and generality

• Works in commodity
datacenters 

• Provides reliability,
congestion control, …

General
Fast

• Makes simplifying
assumptions 

• Requires special
hardware

Slow
Specialized

Three challenges

1. Managing packet loss

2. Low-overhead transport

3. Easy integration for
existing applications

 6

Challenge #1: Managing packet loss
Problem: Millisecond timeouts for small RPCs 

 
 
 

Sender

Receiver

Sender

If a client’s unlock packet is dropped:
• Client retransmits after many milliseconds
• Many contending requests fail

Buffer

 7

Challenge #1: Managing packet loss

Hardware solution: Lossless link layer

(e.g., PFC, InfiniBand)

eRPC’s solution  
A relaxed requirement for rare loss,
supported by existing networks

Problem: Millisecond timeouts for small RPCs

 
 
 

Sender

Receiver

Sender

If a client’s unlock packet is dropped:
• Client retransmits after many milliseconds
• Many contending requests fail

Buffer
Pros: Simple/cheap reliability
Cons: Deadlocks, unfairness

Enabled by low-latency NICs

Slow NIC
Adds 10 µs

Fast NIC
Adds 500 ns

 8

In low-latency networks, switch buffers prevent most loss
• Bandwidth = 25 Gbps, RTT = 6.0 µs

• Bandwidth x delay (BDP) = 19 KB

• Switch buffer = 12 MB >> BDPN N N N

25 Gbps

100 nodes, 6 switches

 9

All modern switches have buffers >> BDP

Broadcom Trident 3 (32 MB) Mellanox Spectrum 2 (42 MB) Barefoot Tofino (22 MB)

These are not “big buffer” switches!

Cisco 3636-C (16 gigabytes, DRAM buffer)

 10

Small BDP + sufficient switch buffer ⇒ Rare loss

19 KB

Switch buffer (12 MB)

Victim node

Node 1

Node 100

Node 2

• Incast tolerance = 12 MB / 19 KB = 640 
 ≈ 50-way tolerance desired in practice [e.g., DCQCN @Microsoft, Timely @Google]

• Tested with 100-way incast: No loss

(+ other non-incast flows)

 11

Challenge #2: Low-overhead transport layer

Many more in paper:

• Optimized memory allocation for small-size RPCs

• Optimized threading for short-duration RPCs

• …

Idea: Optimize for the common case

Example 1: Optimized DMA buffer management for rare packet loss

Example 2: Optimized congestion control for uncongested networks

 12

Example: Optimized DMA buffer management for rare packet loss

Request

NIC

CPU

Method #2: Server’s response
• Free
• Doesn’t work if a packet is lost

Method #1: Explicit NIC signal
• Overhead for each request

Problem: Detecting completion of request DMA

Solution: Use server’s response in common case. Flush DMA queue during rare loss.

DMA read

 13

 Example: Efficient congestion control in software

Problem: Congestion control overhead  

Hardware solution: NIC offload 
Pro: Saves CPU cycles
Con: Low flexibility

eRPC’s solution  
Optimize for uncongested networks

Example: Rate limiter overhead

Ex: Difficult to use Carousel
[SIGCOMM 17]

 14

Datacenter networks are usually uncongested

Facebook datacenter studies

Timescale Links less than 10% utilized

Ten minutes 99% [Roy et al., SIGCOMM 15]

25 µs 90% [Zhang et al., IMC 17]

 15

Congestion control, fast and slow

eRPC uses RTT-based
congestion control 
(Timely [SIGCOMM 15])

RTT high: TX_rate--;
RTT low: TX_rate++;

 16

Congestion control, fast and slow
Client receives ACK & measures RTT

RTT low &
TX rate = MAX

NoUpdate TX rate

NoPlace in rate limiter Yes Place on wireTX rate = MAX

9% CPU overhead20
% C

PU

ov
er

he
ad

eRPC uses RTT-based
congestion control 
(Timely [SIGCOMM 15])

RTT high: TX_rate--;
RTT low: TX_rate++;

 17

Together, common-case optimizations matter

Result: Low overhead transport with congestion control

Unoptimized
+Zero-copy request processing

+Preallocated responses
+Multi-packet RQ

+Rate limiter bypass
+Timely bypass

+Batched RTT timestamps

Millions of requests/second (one core)

0 2 4 6 8 10

66%

 18

eRPC microbenchmark highlights

Lossy 40 GbE network  

• 2.3 µs RPC round-trip latency

• Line rate with one core

• 60 million RPCs/s per machine

• Scalability to 20000 connections (>> RDMA)

 19

Challenge #3: Easy integration with existing applications

Image credit: James Mickens

Complexity during failure

• 5 years of developer effort. 150+ unit tests, fuzzing.
• In production use by Intel

Client

Leader

Follower

Remote procedure calls in Raft

Follower

 20

Replication over eRPC is fast

eRPC/Lossy Ethernet

[Istvan et al., NSDI 16] FPGA

[DARE, HPDC 15] RDMA

[NetChain, NSDI 18] P4 switch

0 5 10

9.7µs

9µs

5.5µs

5.5µs

Client latency (µs)
3-way replication, data in DRAM

Raft-over-eRPC does not have network or object size constraints

 21

Takeaway: Given fast packet I/O, we can provide fast networking in software

I am on the academic job market

erpc.io
Industry impact: https://github.com/daq-db/

“Using performance to justify placing functions in a low-level subsystem must be done carefully.  

Sometimes, by examining the problem thoroughly, the same or better performance can be
achieved at the high level.”

— End-to-end Arguments in System Design [Saltzer, 84]

